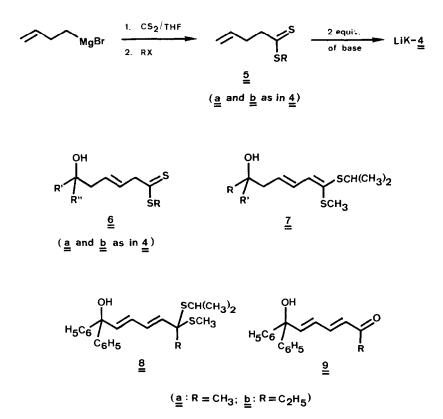

DIANION DERIVATIVES OF METHYL- AND ISOPROPYL-2.4-PENTADIENEDITHIOATE AS d<sup>5</sup>-REAGENTS

Manat Pohmakotr and Digter Seebach\*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstrasse 16, CH - 8092 Zürich

<u>Summary</u>: Li-K-Derivatives of the diamions  $\underline{4}$  are generated. Reactions with carbonyl compounds occur at the w-position to yield  $\underline{6} - \underline{9}$ .


Deprotonated thioacetals  $\underline{l}$  show a pronounced preference to react at the thiolated carbon atom with electrophiles<sup>1)</sup>. Thus, they are widely used in transformations requiring d<sup>1</sup>-synthons<sup>1,2)</sup>  $\underline{l}$ '. In many synthetic situations, reactivity remote from the functional group is desired. We



have previously shown<sup>3)</sup> that this can be accomplished by employing dianion derivatives which, in addition to exhibiting  $\omega$ -ambidoselectivity<sup>2)</sup>, have reactivity umpolung as compared with their neutral counterparts ( $\pi$ -systems vs. doubly "LUMO-filled"  $\pi$ -systems)<sup>2)</sup>. Two examples involving sulfur are Li<sub>2</sub>-thiobenzaldehyde<sup>3a,3c)</sup>  $\underline{2}$  and Li<sub>2</sub>-thioacrolein<sup>3b,3c)</sup>  $\underline{3}$ . The present

communication demonstrates that the Li/K-dithioate  $\frac{4}{2}$  corresponds to the d<sup>5</sup>-synthons<sup>2</sup>)  $\frac{4}{2}$ ,  $\frac{4}{2}$ ,  $\frac{4}{2}$ , and  $\frac{4}{2}$ ".

Addition of carbon disulfide to homoallyl <u>Grignard</u> reagent and alkylation of the resulting dithioate with iodomethane or 2-iodopropane (in the presence of HMPT) furnishes the dithioesters 5 in better than 80% yield<sup>4</sup>). As with  $\gamma$ . $\delta$ -unsaturated ketones<sup>3d</sup>, treatment of 5 first with potassium hydride (0<sup>0</sup>-20<sup>0</sup>C) and then with sec-butyllithium/2 TMEDA (-78<sup>o</sup>C) in THF generates Li/K-derivatives of dianions: 4a as orange suspension, 4b as red-brown solution. Both



combine with aldehydes and ketones preferentially<sup>5)</sup> in the 5-position to give dithioates of type  $\underline{6}$  after aqueous workup or ketene thioacetals<sup>6)</sup>  $\underline{7}$  after quenching with iodomethane; the better yields are obtained with  $\underline{4b}$ .

Deprotonation (2 LDA, THF/15% HMPT,  $-78^{\circ} - 0^{\circ}$ C) and alkylation of the benzophenone adduct  $\underline{7}$ , R = R' = C<sub>6</sub>H<sub>5</sub>, leads to the 6-hydroxy-dienone thioacetals § (cf. ref.<sup>1b)</sup>) which were hydrolyzed (CH<sub>3</sub>I/aq. THF-acetonitrile, CaCO<sub>3</sub>)<sup>1a)</sup> to the parent carbonyl compounds 9, cf. 4<sup>...</sup>. The yields and structures of chromatographed (SiO<sub>2</sub>) and analytically pure products are listed in the accompanying table, together with some characteristic data.

## Table

## Yields and some data of the products $\underline{5}$ - $\underline{9}$ .

| precursors                                                                               | products                                                                      | yield<br>[%] | b.p., m.p. or<br><sup>1</sup> H-NMR (& in ppm)              |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|
| 1-bromo-4-butene                                                                         | <u>5a</u>                                                                     | 89           | 43-45 <sup>0</sup> /1 Torr                                  |
| 1-bromo-4-butene                                                                         | 5 <u>5</u>                                                                    | 81           | 38-40 <sup>0</sup> /0.6 Torr                                |
| 5ౖa_, benzaldehyde                                                                       | $\underline{6}_{\underline{a}}$ , R' = C <sub>6</sub> H <sub>5</sub> , R" ≈ H | 43           | CHO, δ = 4.58 (t,J = 7 Hz)                                  |
| <u>5a</u> , cyclohexanone                                                                | ≦ª, R'-R" = (CH <sub>2</sub> ) <sub>5</sub>                                   | 38           | $-(CH_2)_5$ -, $\delta = 1.4$ (m)                           |
| 5ٍaੂ, benzophenone                                                                       | $\underline{6}\underline{a}$ , R' = R" = C <sub>6</sub> H <sub>5</sub>        | 71           | 64-66 <sup>0</sup> C                                        |
| 5₽, propanal                                                                             | $\underline{6}\underline{b}$ , R' = C <sub>2</sub> H <sub>5</sub> , R" = H    | 56           | CHO, δ = 3.9 (quint,J=7Hz)                                  |
| 5₽, 2-methylpropanal                                                                     | <u>é</u> b_, R' = i-C <sub>3</sub> H <sub>7</sub> , R" = H                    | 49           | CHO, δ = 3.28 (m)                                           |
| 5₽, 2.2-dimethylpropanal                                                                 | $\underbrace{6b}{2}$ , R' = t-C <sub>4</sub> H <sub>9</sub> , R" = H          | 60           | (CH <sub>3</sub> ) <sub>3</sub> C, δ = 0.9 (s)              |
| 5₽, benzaldehyde                                                                         | ≦⊵, R' = C <sub>6</sub> H <sub>5</sub> , R" = H                               | 73           | CHO, δ = 4.62 (t,J = 7 Hz)                                  |
| 5b, acetone                                                                              | <u>≦</u> <u></u> , R' = R" = CH <sub>3</sub>                                  | 39           | $(CH_3)_2 C$ , $\delta = 1.16$ (s)                          |
| 5b, cyclopentanone                                                                       | <pre>6b/2, R' - R" = (CH2)</pre>                                              | 44           | $-(CH_2)_4$ -, $\delta = 1.6$ (m)                           |
| <pre>5b, cyclohexanone</pre>                                                             | ≦b_, R' - R" = (CH <sub>2</sub> ) <sub>5</sub>                                | 55           | $-(CH_2)_5$ -, $\delta = 1.43$ (m)                          |
| 5, benzophenone                                                                          | ≦ <u>b</u> , R' = R" = C <sub>6</sub> H <sub>5</sub>                          | 84           | 53-55 <sup>0</sup> C                                        |
| 5⊈b_, benzophenone, CH <sub>3</sub> I                                                    | $\frac{7}{2}$ , R = R' = C <sub>6</sub> H <sub>5</sub>                        | 80           | 85-86 <sup>0</sup> C                                        |
| $\frac{7}{2}$ , R = R' = C <sub>6</sub> H <sub>5</sub> , CH <sub>3</sub> I               | ₿ <u>a</u>                                                                    | 76           | CH <sub>3</sub> C, δ = 1.7 (s)                              |
| $\frac{7}{2}$ , R = R' = C <sub>6</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> I | §₽                                                                            | 85           | C <u>H</u> <sub>3</sub> CH <sub>2</sub> ,δ=1.0 (t,J = 7 Hz) |
| §a, alkylative hydrolysis                                                                | ₽a                                                                            | 57           | 128-130.5 <sup>0</sup> C                                    |
| <u>8</u> <u>b</u> , alkylative hydrolysis                                                | 9₽                                                                            | 39           | 110-112 <sup>0</sup> C                                      |

- 1) a) Reviews: D. Seebach, Angew. Chem. 81, 690 (1969); ibid. Int. Ed. Engl. 8, 639 (1969); D. Seebach, Synthesis, 17 (1969); D. Seebach and K.-H. Geiss, J. Organomet. Chemistry, Library 1, Elsevier Scientific Publishing Company, Amsterdam, 1976, p. 1 - 92; D. Seebach, K.-H. Geiss, M. Kolb and A.K. Beck, Modern Synthetic Methods, 1976, p. 173 - 299, Schweiz. Chemiker-Verband Zürich; B.-T. Gröbel and D. Seebach, Synthesis, 357 (1977);
  - b) Recent full papers: D. Seebach and M. Kolb, Liebigs Ann. Chem. 811 (1977); D. Seebach, R. Bürstinghaus, B.-T. Gröbel and M. Kolb, ibid. 830 (1977).
- The acceptor (a)/donor (d) nomenclature is defined in a review article on the methods of umpolung: D. Seebach, Angew. Chem. 91 (1979); ibid. Int. Ed. Engl. 18 (1979), in press.
- 3) a) D. Seebach and K.-H. Geiss, Angew. Chem. 86, 202 (1974); ibid. Int. Ed. Engl. 13, 202 (1974);
  - b) K.-H. Geiss, B. Seuring, R. Pieter and D. Seebach, Angew. Chem. 86, 484 (1974); ibid. Int. Ed. Engl. 13, 479 (1974); M. Pohmakotr, K.-H. Geiss and D. Seebach, Chem. Ber. 112 (1979), in press;
  - c) K.-H. Geiss, D. Seebach and B. Seuring, Chem. Ber. 110, 1833 (1977);
  - d) M. Pohmakotr and D. Seebach, Angew. Chem. 89, 333 (1977); ibid. Int. Ed. Engl. 16, 320 (1977); M. Pohmakotr and D. Seebach, Helv. Chim. Acta, 62 (1979), in press;
  - e) R. Henning, F. Lehr and D. Seebach, Helv. Chim. Acta, 59, 2213 (1976); D. Seebach, R. Henning, F. Lehr and J. Gonnermann, Tetrahedron Lett. 1187 (1977); D. Seebach, R. Henning and F. Lehr, Angew. Chem. 90, 479 (1978); ibid. Int. Ed. Engl. 17, 458 (1978); D. Seebach, R. Henning and J. Gonnermann, Chem. Ber. 112, 234 (1979).
- 4) J. Meijer, P. Vermeer and L. Brandsma, Rec. Trav. Chim. 92, 601 (1973).
- 5) A few percents of d<sup>3</sup>-product are also formed, but readily removed during chromatographic purification of 6.
- 6) Only one stereoisomer of  $\underline{7}$  is isolated as judged from the <sup>1</sup>H-NMR-SCH<sub>3</sub> singlett. In analogy with the configurations of the products <sup>3b,3c)</sup> from  $\underline{3}$ , we have drawn E,E- $\underline{7}$ .

(Received in UK 10 April 1979)